Computational design of a pH-sensitive IgG binding protein
نویسندگان
چکیده
منابع مشابه
Computational design of a pH-sensitive IgG binding protein.
Computational design provides the opportunity to program protein-protein interactions for desired applications. We used de novo protein interface design to generate a pH-dependent Fc domain binding protein that buries immunoglobulin G (IgG) His-433. Using next-generation sequencing of naïve and selected pools of a library of design variants, we generated a molecular footprint of the designed bi...
متن کاملComputational design of a PAK1 binding protein.
We describe a computational protocol, called DDMI, for redesigning scaffold proteins to bind to a specified region on a target protein. The DDMI protocol is implemented within the Rosetta molecular modeling program and uses rigid-body docking, sequence design, and gradient-based minimization of backbone and side-chain torsion angles to design low-energy interfaces between the scaffold and targe...
متن کاملpH-dependent FcRn binding and IgG clearance
The Fc domain of IgG has been the target of multiple mutational studies aimed at altering the pH-dependent IgG/FcRn interaction to modulate IgG pharmacokinetics. These studies have yielded antibody variants with disparate pharmacokinetic characteristics, ranging from extended in vivo half-life to those exhibiting extremely rapid clearance. To better understand pH-dependent binding parameters th...
متن کاملBinding Pocket Optimization by Computational Protein Design
Engineering specific interactions between proteins and small molecules is extremely useful for biological studies, as these interactions are essential for molecular recognition. Furthermore, many biotechnological applications are made possible by such an engineering approach, ranging from biosensors to the design of custom enzyme catalysts. Here, we present a novel method for the computational ...
متن کاملComputational Design of a DNA- and Fc-Binding Fusion Protein
Computational design of novel proteins with well-defined functions is an ongoing topic in computational biology. In this work, we generated and optimized a new synthetic fusion protein using an evolutionary approach. The optimization was guided by directed evolution based on hydrophobicity scores, molecular weight, and secondary structure predictions. Several methods were used to refine the mod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 2013
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.1313605111